陈彦伟,程旭东,杨华,李森,王学贵,张和平.基于视频图像的交通枢纽综合体人体检测[J].火灾科学,2013,22(2):102-106.
基于视频图像的交通枢纽综合体人体检测
Pedestrian detection based on intelligent video of subway station
投稿时间:2013-03-14  修订日期:2013-04-12
查看全文  查看/发表评论  下载PDF阅读器
DOI:10.3969/j.issn.1004-5309.2013.02.08
基金项目:国家“十二五”科技支撑计划项目(2011BAK03B02)
作者单位
陈彦伟 中国科学技术大学火灾科学国家重点实验室安徽 合肥230026 
程旭东 中国科学技术大学火灾科学国家重点实验室安徽 合肥230026 
杨华 中国科学技术大学火灾科学国家重点实验室安徽 合肥230028 
李森 中国科学技术大学火灾科学国家重点实验室安徽 合肥230026 
王学贵 中国科学技术大学火灾科学国家重点实验室安徽 合肥230026 
张和平 中国科学技术大学火灾科学国家重点实验室安徽 合肥230026 
中文关键词:  交通枢纽综合体  人员疏散  人体识别  梯度方向直方图  支持向量机算法
英文关键词:Subway station  Evacuation  Pedestrian detection  HOG  SVM
摘要点击次数: 930
全文下载次数: 767
中文摘要:
      针对交通枢纽综合体人体检测的问题,提出一种基于梯度方向直方图(HOG)人体模型特征的检测算法。该方法通过提取人体样本库的HOG特征,用支持向量机算法(SVM)对样本的HOG特征进行分类训练。为了提高算法的精确度和适用性,以南京南站的监控视频为依据建立交通枢纽综合体人体样本库。并以南京南站监控视频和校园拍摄的人员视频作为测试集。结果证明,本算法可以有效识别交通枢纽综合体各种特征人体。
英文摘要:
      Subway platform is densely populated venues, so casualty would be disastrous if fires happen in these places. Human detection is the basis of personnel number statistics, which can guide personnel evacuation. The human detection problem in image sequences is studied in this paper, and an effective method for real-time human detection is presented. A method based on Histograms of Oriented Gradients (HOG) and human body morphological characteristics is studied to define a person. Then human samples are trained with Support Vector Machine (SVM).We shoot personal monitoring video in South Subway Station of Nanjing as the human samples. The algorithm of SVM is used to perform the training to get a human classifier, which is used to conduct the human detection. Results of experiments which were performed practically show that the proposed method can detect preceding person effectively.
关闭