周凤.一种HSI空间基于模糊聚类的火灾彩色图像分割算法[J].火灾科学,2017,26(1):49-53.
一种HSI空间基于模糊聚类的火灾彩色图像分割算法
A fire color image segmentation algorithm base on fuzzy C-means clustering in HSI space
投稿时间:2016-04-21  修订日期:2016-07-22
查看全文  查看/发表评论  下载PDF阅读器
DOI:10.3969/j.issn.1004-5309.2017.01.07
基金项目:绥化学院2015年科学技术研究项目“基于嵌入式视觉的火灾检测的研究”(No:K1502003)
作者单位
周凤 绥化学院信息工程学院绥化,152061 
中文关键词:  火灾图像分割  模糊均值聚类  无关区域抑制  直方图
英文关键词:Fire image segmentation  Fuzzy C-means clustering  Irrelevant area attenuation  Histogram
摘要点击次数: 213
全文下载次数: 462
中文摘要:
      针对通用模糊聚类算法进行彩色图像分割存在对初值敏感,迭代过程耗时等问题,在HSI空间结合火焰图像分布特征,采用平均值法进行初值优选,构造抑制算子和抑制因数对火焰无关区域S和I分量进行有效抑制,采用直方图聚类后进行数据融合等方式,最终实现彩色火灾图像分割。实验表明,该算法提高了彩色火灾图像分割的准确性和收敛速度。
英文摘要:
      The general fuzzy clustering algorithm for color image segmentation is sensitive to initial value and the iterative process is time-consuming. In this paper, a fire color image segmentation algorithm base on fuzzy C-means clustering in HSI space is developed. In HSI color space, with flame image distribution, the average value method is used for optimization of initial value, thereby attenuation operator and attenuation factor are constructed to attenuate the flame unrelated region on S and I component effectively. The data are clustered and integrated base on the histogram, and the color fire image segmentation is finally realized. Experiments show that this algorithm improves the accuracy and convergence rate of color fire image segmentation.
关闭