王自龙,蒋勇.基于案例推理的化工园区应急资源需求预测[J].火灾科学,2020,29(4):253-260.
基于案例推理的化工园区应急资源需求预测
Emergency resources demand prediction in chemical industry park based on case-based reasoning
  
查看全文  查看/发表评论  下载PDF阅读器
DOI:10.3969/j.issn.1004-5309.2020.04.07
基金项目:国家重点研发计划项目(2016YFC0801505)
作者单位
王自龙 中国科学技术大学火灾科学国家重点实验室合肥230026 
蒋勇 中国科学技术大学火灾科学国家重点实验室合肥230026 
中文关键词:  化工园区  应急资源需求  案例推理  人工神经网络
英文关键词:Chemical industry park  Emergency resources demand  Case-based reasoning  Artificial neural network
摘要点击次数: 147
全文下载次数: 1538
中文摘要:
      为确定化工园区突发事故的应急资源需求,提出了一种基于案例推理的化工园区应急资源需求预测方法。该方法主要由三部分组成:(1)基于案例推理的模型构建;(2)化工园区事故的案例描述;(3)基于人工神经网络的案例适应。最后,以石化园区火灾爆炸事故的应急资源需求预测验证该方法的有效性。研究表明,该方法可以实时地对化工园区应急资源需求进行预测,为化工园区的应急资源储备和配置提供支持。
英文摘要:
      In order to determine the emergency resources demand of the chemical industry park, a case-based reasoning (CBR) method for the emergency resources demand prediction of the chemical industry park was proposed. The method consists of three parts: (1) Model construction based on case-based reasoning; (2) Case representation of the accident that occurs in the chemical industry park; (3) Case adaptation based on the artificial neural network. Finally, the validity of this method is verified by the prediction of emergency resources demand for fire and explosion accidents in petrochemical parks. The research shows that the proposed method can predict the emergency resource demand of chemical industry park in real time, and provide support for the emergency resource reserve and allocation of chemical industry park.
关闭