唐琪,胡健,朱小龙,王喜世.细水雾与隔热层协同对锂离子电池灾害传播抑制的研究[J].火灾科学,2023,32(3):195-206.
细水雾与隔热层协同对锂离子电池灾害传播抑制的研究
Synergistic effect of water mist and heat insulation layer on suppression of the damage propagation between lithium-ion batteries
  
查看全文  查看/发表评论  下载PDF阅读器
DOI:10.3969/j.issn.1004-5309.2023.03.08
基金项目:国家重点研发计划项目(2021YFB2402003);安徽高校协同创新项目(GXXT-2020-079)
作者单位
唐琪 中国科学技术大学火灾科学国家重点实验室,合肥,230026 
胡健 中国科学技术大学火灾科学国家重点实验室,合肥,230026 
朱小龙 中国科学技术大学火灾科学国家重点实验室,合肥,230026 
王喜世 中国科学技术大学火灾科学国家重点实验室,合肥,230026 
中文关键词:  三元锂离子电池  热失控传播  隔热层  细水雾  协同抑制
英文关键词:NCM lithium-ion battery  Thermal runaway propagation  Heat insulation layer  Water mist  Synergistic inhibition
摘要点击次数: 168
全文下载次数: 272
中文摘要:
      热失控是锂离子电池最严重的安全问题,一旦发生,极易在电池模组内传播,其释放的热量成倍增长后会导致严重的燃烧爆炸事故,严重阻碍了其在储能、电动汽车等行业的应用,因此需要可靠的方法来阻隔热失控在电池间的传播。目前主流的散热与隔热两种热失控抑制策略都存在不足,细水雾因其出色的冷却能力被首选为散热介质,因此有必要开展细水雾散热与隔热层隔热对电池模组内灾害传播协同抑制的有效性研究。以4块车用7 Ah方型动力三元锂离子电池为研究对象,对比分析了隔热层隔热、细水雾散热及其协同抑制三种策略对热失控传播抑制中的关键参数变化。结果表明:本实验中单纯的隔热或细水雾散热方法均无法完全阻断热失控蔓延,但协同抑制策略不仅能完全有效阻断,还可有效解决隔热板导致的聚热现象与细水雾冷却速率有限的问题,相邻电池的最高温度及最大温升速率控制在了132.4 ℃、0.35 ℃/s以下;同时,有毒气体CO、SO2的浓度相比无抑制时分别下降约21%、30%。协同抑制的综合效果大于两者单独作用之和,本研究可为电池包内合理平衡隔热和散热之间的关系设计提供数据参考。
英文摘要:
      Thermal runaway is the most serious safety problem of lithium-ion batteries. Once it occurs, it is easy to spread within battery modules, and the heat released may cause serious combustion and explosion accidents. This problem seriously hinders the application of such batteries in energy storage, electric vehicles, and other industries. Therefore, reliable methods are needed to prevent the transmission of thermal runaway between batteries. Currently, the mainstream thermal runaway suppression strategies of heat dissipation and heat insulation have shortcomings. Water mist is the preferred cooling medium due to its excellent cooling ability. Therefore, it is necessary to study the effectiveness of synergism suppression of disaster propagation in battery modules by water mist heat dissipation and heat insulation layer heat insulation. In this paper, four 7 Ah square power terpolymer lithium-ion batteries for vehicles were taken as the research object, and the key parameter changes in the three strategies of heat insulation, water mist heat dissipation and synergic suppression of thermal runaway propagation were compared and analyzed. In this experiment, neither heat insulation nor water mist heat dissipation method can completely block runaway thermal spread. However, the synergic suppression strategy can not only completely and effectively block, but also effectively solve the problem of heat accumulation caused by heat insulation panel and limited cooling rate of water mist. The maximum temperature and maximum temperature rise rate of adjacent batteries are controlled below 132.4 ℃ and 0.35 ℃/s. The concentration of toxic gases CO and SO2 decreased by about 21% and 30%, respectively, compared with that without inhibition. The comprehensive effect of inhibition was greater than the sum of the two separate effects. This paper can provide data reference for designing a reasonable balance between heat insulation and heat dissipation in the battery pack.
关闭