郭福雁,张钰奇,王悦,秦政.基于逻辑回归感知机结构优化蚁群算法的路径规划研究[J].火灾科学,2024,33(4):252-262.
基于逻辑回归感知机结构优化蚁群算法的路径规划研究
Research on path planning based on logistic regression perceptron structure optimized by ant colony algorithm
  
查看全文  查看/发表评论  下载PDF阅读器
DOI:10.3969/j.issn.1004-5309.2024.04.06
基金项目:天津市企业科技特派员项目(19JCTPJC48900)
作者单位
郭福雁 天津城建大学控制与机械工程学院,天津,300384 
张钰奇 天津城建大学控制与机械工程学院,天津,300384 
王悦 天津城建大学控制与机械工程学院,天津,300384 
秦政 天津城建大学控制与机械工程学院,天津,300384 
中文关键词:  路径规划  逻辑回归  感知机结构网络  蚁群优化算法
英文关键词:Path planning  Logistic regression  Perceptron structure network  Ant colony optimization algorithm
摘要点击次数: 1010
全文下载次数: 49
中文摘要:
      公共建筑的空间布局和复杂性给路径规划带来了挑战,因为通道布局复杂,且存在障碍物,使得全局搜索更加困难,并可能导致算法陷入局部最优解,所选路线不平滑。提出了一种基于逻辑回归叠加感知机结构(LR-MLP)的优化蚁群算法路径规划模型,该模型使用逻辑回归模型对每条路径进行差异化处理,结合神经网络感知机结构生成初始全局优化路径。在此基础上,使用蚁群(ACO)算法进行迭代和搜索,以减少计算量和信息素更新的频率,进一步提高算法的适应能力,获得全局最优解。对比ACO和LR-MLP-ACO两种模型的仿真结果,LR-MLP-ACO模型的路径长度减少了12.8%、转折点数量减少了56%、执行时间加快了14.8%,这些数据有力地证明了该优化模型在求解问题时的有效性。
英文摘要:
      The spatial layout and complexity of public buildings bring challenges to path planning because the channel layout is complex and there are obstacles, which makes global search more difficult and may cause the algorithm to fall into local optimal solutions and the selected route is not smooth. Therefore, this paper proposes an optimized ant colony algorithm path planning model based on logistic regression stack perceptron structure (LR-MLP). The model uses a logistic regression model to differentiate each path and combines the neural network perceptron structure to generate the initial global optimization path. On this basis, the ant colony (ACO) algorithm is used for iteration and search, in order to reduce the amount of computation and the frequency of pheromone update, further improve the adaptability of the algorithm and obtain the global optimal solution. Comparing the simulation results of ACO and LR-MLP-ACO models, the LR-MLP-ACO model reduces the path length by 12.8% and the number of turning points by 56%, and speeds up the execution time by 14.8%. These data strongly prove the effectiveness of this optimization model in solving problems.
关闭